Error Bounds and Normalizing Constants for Sequential Monte Carlo Samplers in High Dimensions
نویسندگان
چکیده
In this article we develop a collection of results associated to the analysis of the Sequential Monte Carlo (SMC) samplers algorithm, in the context of high-dimensional i.i.d. target probabilities. The SMC samplers algorithm can be designed to sample from a single probability distribution, using Monte Carlo to approximate expectations w.r.t. this law. Given a target density in d−dimensions our results are concerned with d → ∞, while the number of Monte Carlo samples, N , remains fixed. We deduce an explicit bound on the Monte-Carlo error for estimates derived using the SMC sampler and the exact asymptotic relative L2-error of the estimate of the normalizing constant associated to the target. We also establish marginal propagation of chaos properties of the algorithm. These results are deduced when the cost of the algorithm is O(Nd).
منابع مشابه
Error Bounds and Normalizing Constants for Sequential Monte Carlo in High Dimensions
In a recent paper [3], the Sequential Monte Carlo (SMC) sampler introduced in [12, 19, 24] has been shown to be asymptotically stable in the dimension of the state space d at a cost that is only polynomial in d, when N the number of Monte Carlo samples, is fixed. More precisely, it has been established that the effective sample size (ESS) of the ensuing (approximate) sample and the Monte Carlo ...
متن کاملSequential Monte Carlo Samplers
In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...
متن کاملMeasuring the non-asymptotic convergence of sequential Monte Carlo samplers using probabilistic programming
A key limitation of sampling algorithms for approximate inference is that it is difficult to quantify their approximation error. Widely used sampling schemes, such as sequential importance sampling with resampling and MetropolisHastings, produce output samples drawn from a distribution that may be far from the target posterior distribution. This paper shows how to upper-bound the symmetric KL d...
متن کاملSequential Monte Carlo samplers: error bounds and insensitivity to initial conditions
This paper addresses nite sample stability properties of sequential Monte Carlo methods for approximating sequences of probability distributions. The results presented herein are applicable in the scenario where the start and end distributions in the sequence are xed and the number of intermediate steps is a parameter of the algorithm. Under assumptions which hold on non-compact spaces, it is s...
متن کاملEfficient Gaussian graphical model determination under G-Wishart prior distributions
This paper proposes a new algorithm for Bayesian model determination in Gaussian graphical models under G-Wishart prior distributions. We first review recent development in sampling from G-Wishart distributions for given graphs, with a particular interest in the efficiency of the block Gibbs samplers and other competing methods. We generalize the maximum clique block Gibbs samplers to a class o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013